Adaptive Linear Step-up Procedures that control the False Discovery Rate

نویسنده

  • Yoav Benjamini
چکیده

The linear step-up multiple testing procedure controls the False Discovery Rate (FDR) at the desired level q for independent and positively dependent test statistics. When all null hypotheses are true, and the test statistics are independent and continuous, the bound is sharp. When some of the null hypotheses are not true, the procedure is conservative by a factor which is the proportion m0/m of the true null hypotheses among the hypotheses. We provide a new two-stage procedure in which the linear step-up procedure is used in stage one to estimate m0, providing a new level q′ which is used in the linear step-up procedure in the second stage. We prove that a general form of the two-stage procedure controls the FDR at the desired level q. This framework enables us to study analytically the properties of other procedures that exist in the literature. A simulation study is presented that shows that two-stage adaptive procedures improve in power over the original procedure, mainly because they provide tighter control of the FDR. We further study the performance of the current suggestions, some variations of the procedures, and previous suggestions, in the case where the test statistics are positively dependent, a case for which the original procedure controls

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Proof of FDR Control Based on Forward Filtration

For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...

متن کامل

An Adaptive Step - down Procedure with Proven Fdr Control under Independence

In this work we study an adaptive step-down procedure for testing m hypotheses. It stems from the repeated use of the false discovery rate controlling the linear step-up procedure (sometimes called BH), and makes use of the critical constants iq/[(m + 1− i(1− q)], i= 1, . . . ,m. Motivated by its success as a model selection procedure, as well as by its asymptotic optimality, we are interested ...

متن کامل

Two simple sufficient conditions for FDR control

We show that the control of the false discovery rate (FDR) for a multiple testing procedure is implied by two coupled simple sufficient conditions. The first one, which we call “self-consistency condition”, concerns the algorithm itself, and the second, called “dependency control condition” is related to the dependency assumptions on the p-value family. Many standard multiple testing procedures...

متن کامل

Adaptive FDR control under independence and dependence

In the context of multiple hypotheses testing, the proportion π0 of true null hypotheses among the hypotheses to test is a quantity that often plays a crucial role, although it is generally unknown. In order to obtain more powerful procedures, recent research has focused on finding ways to estimate this proportion and incorporate it in a meaningful way in multiple testing procedures, leading to...

متن کامل

Comparative analysis of false discovery rate methods in constructing metabolic association networks

Gaussian graphical model (GGM)-based method, a key approach to reverse engineering biological networks, uses partial correlation to measure conditional dependence between two variables by controlling the contribution from other variables. After estimating partial correlation coefficients, one of the most critical processes in network construction is to control the false discovery rate (FDR) to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006